Factorizable quantum channels, non-closure of quantum correlations and the Connes Embedding Problem

Magdalena Musat University of Copenhagen

Special Week on Operator Algebras ECNU, Shanghai, June 8, 2021

The Connes Embedding Problem (CEP)(Annals of Math.'76): Does every separable finite von Neumann alg *M* admit an embedding into

 $\mathcal{R}^{\omega} = \ell^{\infty}(\mathcal{R})/\{(T_n): \lim_{\omega} \|T_n\|_2 = 0\},\$

 $\omega =$ free ultrafilter on \mathbb{N} , $||T||_2 = \tau_{\mathcal{R}} (T^*T)^{1/2}$, $\tau_{\mathcal{R}} =$ trace on \mathcal{R} , the hyperfinite II₁-factor.

Theorem (Kirchberg '93): Let (M, τ) be a separable finite vN alg with faithful normal tracial state τ . Then M admits a τ -preserving embedding into \mathcal{R}^{ω} iff $\forall \varepsilon > 0$ and every set u_1, \ldots, u_n of unitaries in $M, \exists k \ge 1$ and unitaries v_1, \ldots, v_n in $M_k(\mathbb{C})$:

$$\left| \tau(u_j^* u_i) - \operatorname{tr}_k(v_j^* v_i) \right| < \varepsilon, \qquad 1 \leq i,j \leq n.$$

Consider the following sets of $n \times n$ matrices of correlations, $n \ge 2$:

$$\begin{aligned} \mathcal{G}_{\mathrm{matr}}(n) &= \bigcup_{k \geq 1} \left\{ \begin{bmatrix} \mathrm{tr}_{k}(u_{j}^{*}u_{i}) \end{bmatrix} : u_{1}, \ldots, u_{n} \text{ unitaries in } M_{k}(\mathbb{C}) \right\}, \\ \cap \\ \mathcal{G}_{\mathrm{fin}}(n) &= \left\{ \begin{bmatrix} \tau(u_{j}^{*}u_{i}) \end{bmatrix} : u_{1}, \ldots, u_{n} \text{ unitaries in arbitrary} \\ & \text{ finite dim } \mathbb{C}^{*}\text{-alg } (\mathcal{A}, \tau) \right\}, \\ \mathcal{G}(n) &= \left\{ \begin{bmatrix} \tau(u_{j}^{*}u_{i}) \end{bmatrix} : u_{1}, \ldots, u_{n} \text{ unitaries in arbitrary finite} \\ & \text{ vN alg } (M, \tau) \right\}. \end{aligned}$$

All sets equal if n = 2.

Related sets: $D_{\text{fin}}(n) \subseteq D(n)$ where unitaries are replaced by projections.

Theorem (Kirchberg '93): CEP pos $\iff \mathcal{G}(n) = \mathsf{cl}(\mathcal{G}_{\mathrm{matr}}(n)), \forall n \geq 3.$

Theorem (Rørdam-M '19):

- 1) $\mathcal{G}_{matr}(n)$ is neither convex, nor closed when $n \geq 3$.
- 2) $\mathcal{G}_{fin}(n)$ is convex for all $n \ge 2$, but not closed when $n \ge 11$.
- 3) $D_{fin}(n)$ is convex for all $n \ge 2$, but not closed when $n \ge 5$.

To prove 1) and that " $D_{\text{fin}}(n)$ not closed $\Rightarrow \mathcal{G}_{\text{fin}}(2n+1)$ not closed" we used a **trick** (originating in ideas of Regev-Slofstra-Vidick):

Let p_1, \ldots, p_n be projections in a vN alg (M, τ_M) with n.f. tracial state. Define unitaries $u_0, u_1, \ldots, u_{2n} \in M$ by $u_0 = 1$ and

$$u_j = 2p_j - 1, \ 1 \le j \le n, \quad u_j = \frac{1}{\sqrt{2}}(u_{j-n} + i \cdot 1), \ n+1 \le j \le 2n.$$

Let (N, τ_N) be some other vN alg with n.f. tracial state. Then \exists unitaries $v_0, v_1, \ldots, v_{2n} \in N$ s.t. $\tau_N(v_j^* v_i) = \tau_M(u_j^* u_i), \forall 0 \le i, j \le 2n$, iff \exists projections $q_1, \ldots, q_n \in N$ satisfying

$$\tau_N(q_jq_i)=\tau_M(p_jp_i), \qquad 1\leq i,j\leq n.$$

▶ Recall: If $u \in A$ (unital C*-alg) unitary, then $\frac{1}{\sqrt{2}}(u + i \cdot 1)$ is a unitary iff u is a symmetry, i.e., $\frac{1}{2}(u + 1)$ is a proj.

▶ Idea behind the **trick**: the map $u_j \mapsto v_j$, extended linearly between Eucl spaces (Span{ $u_0, \ldots u_{2n}$ }, $\langle \cdot, \cdot \rangle_{\tau_M}$), (Span{ $v_0, \ldots v_{2n}$ }, $\langle \cdot, \cdot \rangle_{\tau_N}$) is an isometry.

To prove $D_{fin}(n)$ is not closed when $n \ge 5$, we followed ideas of D-P-P '17, and employed a theorem of Kruglyak-Rabanovich-Samoilenko '02, concerning existence of projections on a Hilbert space adding up to a scalar multiple of the identity, to show:

Theorem: Let $n \ge 5$ and $t \in [\frac{1}{2}(1 - \sqrt{1 - 4/n}), \frac{1}{2}(1 + \sqrt{1 - 4/n})].$ Define $A_t^{(n)} = [A_t^{(n)}(i,j)]_{1 \le i,j \le n} \in M_n(\mathbb{R})$ by $A_t^{(n)}(i,i) = t, \quad A_t^{(n)}(i,j) = \frac{t(nt-1)}{n-1}, i \ne j.$ If $t \notin \mathbb{Q}$, then $A_t^{(n)} \in \overline{D_{\text{fin}}(n)} \setminus D_{\text{fin}}(n).$

▶ (PSSTW '16): $\mathcal{D}(n)$, $\mathcal{D}_{fin}(n)$ affinely homeo to the sets of synchronous quantum correlations $C_{qc}^{s}(n,2)$, $C_{q}^{s}(n,2)$.

Now onto quantum channels:

► (Choi '73): $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ linear is completely positive (cp) iff $Tx = \sum_{i=1}^d a_i^* x a_i, \quad x \in M_n(\mathbb{C}),$

where $a_1,\ldots,a_d\in M_n(\mathbb{C})$ can be chosen linearly independent.

▶ The Choi matrix C_T of a linear map $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is

$$C_{\mathcal{T}} = \sum_{i,j=1}^{n} e_{ij} \otimes T(e_{ij}) \in M_n(\mathbb{C}) \otimes M_n(\mathbb{C}) = M_{n^2}(\mathbb{C}),$$

where $\{e_{ij}\}_{1 \leq i,j \leq n}$ are matrix units for $M_n(\mathbb{C})$. Then

$$T(e_{ij}) = \sum_{k,\ell=1}^{n} C_T(i,j;k,\ell) e_{k\ell}, \qquad 1 \leq i,j \leq n,$$

where $C_T(i, j; k, \ell) = \langle C_T, e_{ij} \otimes e_{k\ell} \rangle_{\mathrm{Tr}_n \otimes \mathrm{Tr}_n}$ (matrix coefficients). (Choi '75): *T* completely positive **iff** C_T positive matrix.

- A cp trace-preserving map $T : M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is a quantum channel. **Examples** of (unital) quantum channels:
 - Automorphisms of $M_n(\mathbb{C})$: $T \in Aut(M_n(\mathbb{C}))$ iff $\exists u \in U(M_n(\mathbb{C}))$ s.t.

$$T(x) = u^* x u, \quad x \in M_n(\mathbb{C}).$$

(Kümmerer '83): Any unital qubit is a convex comb of automorph.

• Completely depolarizing channel S_n , $n \ge 2$

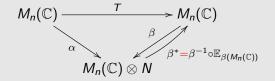
$$S_n(x) = \operatorname{tr}_n(x) \mathbb{1}_n, \quad x \in \mathbb{M}_n(\mathbb{C}).$$

• Schur multipliers associated to (complex) correlation matrices: If $B \in M_n(\mathbb{C})$ is a correlation matrix, then $T_B : M_n(\mathbb{C}) \to M_n(\mathbb{C})$

$$T_B\left([x_{ij}]_{1\leq i,j\leq n}\right)=[x_{ij}b_{ij}]_{1\leq i,j\leq n},\quad [x_{ij}]_{1\leq i,j\leq n}\in M_n(\mathbb{C}).$$

is a unital quantum channel.

Definition (Anantharaman-Delaroche '05): A unital quantum channel $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is called *factorizable* if $\exists vN$ alg (N, ψ) with n.f. tracial state and unital *-homs $\alpha, \beta: M_n(\mathbb{C}) \to M_n(\mathbb{C}) \otimes N : T = \beta^* \circ \alpha$.



▶ α , β are injective (thus embeddings) and trace-preserving. Since unital embeddings of $M_n(\mathbb{C})$ into a vN alg are unitarily equiv, can take

$$eta(x) = x \otimes 1_N, \quad lpha(x) = u^* eta(x) u, \quad x \in M_n(\mathbb{C}),$$

for some $u \in M_n(\mathbb{C}) \otimes N$ unitary. N can be taken II₁-vN alg (even factor).

Theorem (Haagerup-M '11): $T : M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is a factorizable quantum channel iff $\exists (N, \tau_N)$ finite vN algebra (called ancilla) and a unitary $u \in M_n(\mathbb{C}) \otimes N$: $T_X = (\mathrm{id}_{M_n(\mathbb{C})} \otimes \tau_N)(u^*(x \otimes 1_N)u), x \in M_n(\mathbb{C})$.

Def/Thm (Haagerup-M '11): $T : M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is a factorizable quantum channel iff $\exists (N, \tau_N)$ finite vN algebra (called ancilla) and a unitary $u \in M_n(\mathbb{C}) \otimes N$: $T_X = (\mathrm{id}_{M_n(\mathbb{C})} \otimes \tau_N)(u^*(x \otimes 1_N)u), x \in M_n(\mathbb{C})$.

► (R. Werner): Factorizable channels are obtained by coupling the input system to a maximally mixed ancillary one, executing a unitary rotation on the combined system, and tracing out the ancilla.

Automorphisms of $M_n(\mathbb{C})$ (unitarily implem channels) are factorizable.

Let $\mathcal{FM}(n)$ denote all factorizable quantum channels on $M_n(\mathbb{C})$, $n \ge 2$. Then $\mathcal{FM}(n)$ is convex and closed.

Further examples of factorizable channels:

- Convex comb of automorphisms of $M_n(\mathbb{C})$.
- The completely depolarizing channel S_n , as

$$\int_{\mathcal{U}(n)} u^* x u \, d\mu(u) = \operatorname{tr}_n(x) \mathbf{1}_n = S_n(x), \quad x \in M_n(\mathbb{C})$$

• Schur multipliers associated to real correlation matrices (Ricard '08).

Theorem (Haagerup-M '11): For all $n \ge 3$, there exist non-factorizable quantum channels on $M_n(\mathbb{C})$. Each such channel violates the Asymptotic Quantum Birkhoff Conjecture of Smolin-Verstraete-Winter '05.

▶ Unital quantum channels which are extreme points of CPT or UCP, are non-factorizable. Concrete example: the Holevo-Werner channel W_3^- . With Haagerup and Ruskai, systematic recipe for non-factoriz channels.

► For a factorizable channel, "the" ancilla and its "size" **not** unique. E.g., possible ancillas for S_n are: \mathbb{C}^{n^2} , $M_n(\mathbb{C})$, but also (a corner of) $(M_n(\mathbb{C}), \operatorname{tr}_n) * (M_n(\mathbb{C}), \operatorname{tr}_n)$, the reduced free product von Neumann algebra of two copies of $M_n(\mathbb{C})$.

Question: Do we **need** (inf dim) vN alg to describe factorizable channels? Let $\mathcal{FM}_{fin}(n) =$ factoriz channels on $M_n(\mathbb{C})$ admitting a finite dim ancilla.

Theorem (Rørdam-M '19): $\mathcal{FM}_{fin}(n)$ is not closed, whenever $n \ge 11$. Moreover, for each such n, there exist factorizable quantum channels on $M_n(\mathbb{C})$ which do require infinite dimensional (even type II₁) ancilla. **Theorem** (Rørdam-M '19): $\mathcal{FM}_{fin}(n)$ is not closed, whenever $n \ge 11$. Moreover, for each such n, there exist factorizable quantum channels on $M_n(\mathbb{C})$ which do require infinite dimensional (even type II₁) ancilla.

Proposition (Haagerup-M '11): A Schur multiplier T_B is factorizable iff $B \in \mathcal{G}(n)$ (i.e., $B = [\tau(u_j^*u_i)]$, $u_1, \ldots u_n$ unitaries in a fin vN alg (M, τ)). Furthermore,

$$T_B \in \mathcal{FM}_{\mathrm{fin}}(n) \iff B \in \mathcal{G}_{\mathrm{fin}}(n).$$

As the map $B \mapsto T_B$ is an affine homeo, the theorem above follows from non-closure of $\mathcal{G}_{\text{fin}}(n)$, whenever $n \geq 11$.

Thm (Haagerup-M '15) CEP pos iff $\overline{\mathcal{FM}_{fin}(n)} = \mathcal{FM}(n), \forall n \geq 3$.

(Rørdam-M '20): A new view-point on factorizable channels, leading to further connections (and interesting open problems in C*-algebras):

▶ $\mathcal{FM}(n)$ is *parametrized by* simplex of tracial states $T(M_n(\mathbb{C}) * M_n(\mathbb{C}))$.

More precisely, if $\tau \in T(M_n(\mathbb{C}) * M_n(\mathbb{C}))$, let

 $C_{\tau}(i,j;k,\ell) = n\tau \big(\iota_2(e_{k\ell})^* \iota_1(e_{ij})\big), \qquad 1 \leq i,j,k,\ell \leq n,$

where $\iota_1, \iota_2 \colon M_n(\mathbb{C}) \to M_n(\mathbb{C}) * M_n(\mathbb{C})$ are the *canonical inclusions*. Then $C_{\tau} \in M_{n^2}(\mathbb{C})$ is positive, hence it is the Choi matrix of some quantum channel T_{τ} . Furthermore, turns out that T_{τ} is factorizable!

In fact, the map $\Phi: T(M_n(\mathbb{C}) * M_n(\mathbb{C})) \to \mathcal{FM}(n), \tau \mapsto \Phi(\tau) := T_{\tau}$ is an affine continuous surjection, satisfying, moreover,

$$\Phi(T_{\mathrm{fin}}(M_n(\mathbb{C}) * M_n(\mathbb{C}))) = \mathcal{FM}_{\mathrm{fin}}(n),$$

where $T_{\rm fin}$ = tracial states that factor through fin. dim. C*-alg.

The affine cont surj Φ : $T(M_n(\mathbb{C}) * M_n(\mathbb{C})) \to \mathcal{FM}(n), \tau \mapsto T_{\tau}$, satisfies

•
$$\Phi(T_{\operatorname{fin}}(M_n(\mathbb{C}) * M_n(\mathbb{C}))) = \mathcal{FM}_{\operatorname{fin}}(n),$$

•
$$\Phi(\overline{T_{\operatorname{fin}}(M_n(\mathbb{C}) * M_n(\mathbb{C}))}) = \overline{\mathcal{FM}_{\operatorname{fin}}(n)},$$

where $T_{\rm fin}$ = tracial states that factor through fin. dim. C*-alg.

Recall: CEP positive answer $\iff \mathcal{FM}(n) = \overline{\mathcal{FM}_{fin}(n)}, \forall n \ge 3.$

Question: What can we say about $\overline{T_{fin}(M_n(\mathbb{C}) * M_n(\mathbb{C}))}$?

- (Exel-Loring '92): $M_n(\mathbb{C}) * M_n(\mathbb{C})$ residually finite dim. (RFD)
- (Blackadar '85): $M_n(\mathbb{C}) * M_n(\mathbb{C})$ semi-projective.

In general, given A = unital C^* -algebra, we have inclusions:

$\mathcal{T}_{\mathrm{fin}}(A)\subseteq\overline{\mathcal{T}_{\mathrm{fin}}(A)}\subseteq\mathcal{T}_{\mathrm{qd}}(A)\subseteq\mathcal{T}_{\mathrm{am}}(A)\subseteq\mathcal{T}_{\mathrm{hyp}}(A)\subseteq\mathcal{T}(A),$

where $T_{\rm qd}(A) =$ quasi-diagonal traces, $T_{\rm am}(A) =$ amenable (=liftable) traces, $T_{\rm hyp}(A) =$ hyperlinear traces (i.e., traces τ st $\pi_{\tau}(A)'' \hookrightarrow \mathcal{R}^{\omega}$).

▶ If A is separable, then $\overline{T_{\text{fin}}(A)}$, $T_{\text{qd}}(A)$, $T_{\text{am}}(A)$, resp., $T_{\text{hyp}}(A)$ contains a faithful trace iff A is RFD, quasi-diagonal, embeds into \mathcal{R}^{ω} with ucp lift to $\ell^{\infty}(\mathcal{R})$, resp., embeds into \mathcal{R}^{ω} .

- CEP pos answer iff $T_{hyp}(A) = T(A)$, for all C^* -alg A.
- It is open whether $T_{\rm qd}(A) = T_{\rm am}(A)$. There are strong positive results!
- (N. Brown '06): \exists exact RFD C^* -alg A s.t. $T_{am}(A) \neq T_{hyp}(A)$.
- A (weakly) semi-projective $\implies \overline{T_{\text{fin}}(A)} = T_{\text{qd}}(A)$
- (Hadwin–Shulman '17): \exists RFD C^* -alg A s.t. $\overline{T_{\text{fin}}(A)} \neq T_{\text{qd}}(A)$.

Thm (Rørdam-M '20): $\overline{T_{\text{fin}}(M_n(\mathbb{C}) * M_n(\mathbb{C}))} = T_{\text{hyp}}(M_n(\mathbb{C}) * M_n(\mathbb{C})).$

Thm (Rørdam-M): $\overline{T_{\text{fin}}(M_n(\mathbb{C}) * M_n(\mathbb{C}))} = T_{\text{hyp}}(M_n(\mathbb{C}) * M_n(\mathbb{C})).$

Cor: CEP pos iff $T_{hyp}(M_n(\mathbb{C}) * M_n(\mathbb{C})) = T(M_n(\mathbb{C}) * M_n(\mathbb{C})), \forall n \ge 3.$

Further results: Let A be a unital C^* -algebra.

- If $M_n(A)$ is a quotient of $M_n(\mathbb{C}) * M_n(\mathbb{C})$, then A is gen by n^2 elem.
- If A is gen by n-1 elem, then $M_n(A)$ is a quotient of $M_n(\mathbb{C}) * M_n(\mathbb{C})$.

Theorem: Each metrizable Choquet simplex is affinely homeo to a face of $T(M_n(\mathbb{C}) * M_n(\mathbb{C}))$.

Question: Is $T(M_n(\mathbb{C}) * M_n(\mathbb{C}))$ the Poulsen simplex?

Groups, C*-tensor norms, Tsirelson's Conjecture, Complexity and **CEP** For $n, k \ge 2$, let $\Gamma = \mathbb{Z}_n * \mathbb{Z}_n * \cdots * \mathbb{Z}_n$ (k free factors).

Theorem (Kirchberg '93, Fritz/Junge et al '09, Ozawa '12): TFAE:

(i)
$$C^*(\Gamma) \otimes_{\max} C^*(\Gamma) = C^*(\Gamma) \otimes_{\min} C^*(\Gamma), \forall n, k \ge 2.$$

- (ii) $C^*(\mathbb{F}_\infty) \otimes_{\max} C^*(\mathbb{F}_\infty) = C^*(\mathbb{F}_\infty) \otimes_{\min} C^*(\mathbb{F}_\infty).$
- (iii) The Connes Embedding Problem has a positive answer.
- (iv) Tsirelson's Conjecture is true: $cl(C_{qs}(n,k)) = C_{qc}(n,k), \forall n, k \ge 2.$

Posted on arXiv, Jan. 13, 2020: $MIP^* = RE$, Ji, Natarajan, Vidick, Wright, Yuen, 165 pp.

Proving that the complexity class MIP^{*} (quantum version of complexity class MIP=languages with a Multiprover Interactive Proof) contains an undecidable language, they conclude that Tsirelson's Conjecture is **false**!

▶ New version (with corrections) 206 pp., posted on arXiv, Sept. 29, 2020.